MICROSATELLITE LETTERS

Development of 31 new microsatellite loci for two mole salamanders (*Ambystoma laterale* and *A. jeffersonianum*)

Robert D. Denton · H. Lisle Gibbs · Travis C. Glenn

Received: 3 June 2014/Accepted: 23 August 2014/Published online: 29 August 2014 © Springer Science+Business Media Dordrecht 2014

Abstract Ambystoma salamanders are amphibians that due to limited dispersal abilities and reliance on wetlands for breeding are susceptible to population declines and local extinctions (Blaustein et al. 2011). Species identification within Ambystoma is especially difficult due to the presence of unisexual Ambystoma that consist of multiple all-female lineages in which clones can have between two and five nuclear genomes from up to five other Ambystoma species (Bogart et al. 2007). The majority of these unisexual Ambystoma are composed of nuclear genomes from two species, A. laterale (Blue Spotted Salamander) and A. jeffersonianum (Jefferson Salamander). We developed species-specific microsatellite markers for these two species as a tool for the identification and investigation of the genetic interactions between sexual and unisexual groups in areas where either sexual species is endangered or of special conservation concern (Ohio, Indiana, and Ontario).

Microsatellites were isolated as described in Kartzinel et al. (2012). Primers which amplified 144 loci (96 from two

Electronic supplementary material The online version of this article (doi:10.1007/s12686-014-0320-7) contains supplementary material, which is available to authorized users.

R. D. Denton (⊠) · H. L. Gibbs Department of Evolution, Ecology, and Organismal Biology, Aronoff 300, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA e-mail: robert.d.denton@gmail.com

T. C. Glenn

Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA

separate A. laterale libraries, 48 from an A. jeffersonianum library) and were initially screened across four individuals from each species. Those that showed amplification and polymorphism within a single species were then assayed in an additional 16 individuals sampled from across the species' geographic range (Supplementary Table S1). PCR reactions for all primers were carried out in 10 µl reactions and consisted of 3.9 µl ddH20, 0.3 µl of mixed forward (CAG or M13) and reverse primer (untagged), 0.3 µl labelled M13R/CAG tag (6-FAM, HEX, or NED), 5 µl BioMixTM Red (BIOLINE), and 0.5 µl of template DNA. Primers were tested using the following temperature profile. First, each reaction was held at 95 °C for 2 min 30 s followed by 20 touchdown cycles (95 °C for 20 s, 60 °C for 20 s with a 0.5 °C decrease per cycle, and 72 °C for 30 s). The reaction was then subject to 15 cycles consisting of 95 °C for 20 s, 50 °C for 20 s, and 72 °C for 30 s. Finally, reactions were held at 72 °C for 10 min. PCR products were analyze on either a Applied Biosystems 3100 or 3730 DNA sequencer using a ROX-labeled internal size standard (GeneScan 500 ROX, Applied Biosystems). Profiles were analyzed using Genemapper software (version 4.1, Applied Biosystems).

We identified 15 species-specific loci in *A. laterale* (11 polymorphic, 4 monomorphic) and 13 species-specific loci in *A. jeffersonianum* (all polymorphic; Table 1). In addition, we characterized four loci that amplify in both species at non-overlapping size ranges. We calculated observed and expected heterozygosities using GenAlEx (Peakall and Smouse 2012; Table 1). There was no strong evidence of linkage disequilibrium (2 of 170 pairwise comparisons). Overall, the loci produced a similar average numbers of alleles (*A. laterale*: 5.29 ± 0.97 SE; *A. jeffersonianum*: 5.47 ± 0.89 SE), and the range of observed and expected heterozygosities varied (H_o: 0.053–1.000;

 H_{e}

0.440

0.827

0.455

0.500

0.480

0.000

0.782

0.000

0.000

0.471

0.744

0.000

0.698

0.624

0.051

0.490

0.589

0.500

0.000 0.000

0.500 0.662

1.000 0.632

0.278 0.711

Species	Locus	Primer sequence $(5'-3')$	Repeat motif	Size (bp)	Ν	Na	H _o
Ambystoma laterale	1003-626	F-CGACCACCTGACTAGGACCC	AAAGAG (36)	150-207	27	7	0.185
		R-ACTTGCTTGTTCCCCTGCC					
	1400- 1610	F-GGTTGGGGAATTCTATCTATCCC	AAAG (44)	238–357	27	15	0.704
		R-GCCTGTTCTGTGTCAGATTTGC					
	1433-688	F-AGAGCATTGTTCCTCCAGGG	AAAG (76)	216–250	11	6	0.545
		R-CAAGGTCGATCTGGTGAGGG					
	1483- 1085	F-	AAAC (40)	168–176	15	2	1.000
		ACAATCAGACAACTAAGAGCACTGG					
		R-CCCAGATACCCCTAGGTTTGG					
	1707- 1501 1944-51	F-	AAAC (24) ATAC (36)	155–159 206	15 15	2	0.533 0.000
		TCGATTAATTICATCAAAATAGCTGC					
		R-TICITIACIGIIGCGCCCG					
		F-CAAAGGGGACTATCGGGTAGC				1	
		R-AACGGTGAAGGGTGACAAGG					
	540-1773	F-ATTAAGAGGCCCCTGCTTGG	ATATC (35)	140–195	29	9	0.690
		R-ACAGGTGCGTTATGAATGCC					
	AmJef13	F-AAGCCCTTGGTGTCTTATC	AAAC (6)	270	20	1	0.000
		R-GTTTGCTACCTAACTGCCTGCTAG					
	AmJef44	F-CTTCAGCCGATCCCTCCC	AGAT (15)	194	19	1	0.000
		R-GTTTGGTAGTCGGCTGATAGAGTG					
	AmLat13	F-TTCTTGGGCTTTCTCACAGC	AAAC (6)	196–200	24	3	0.625
		R-GTTTGGGTCTGACTGCGCCTTAC ^b					
	AmLat24	F-ACACCTAATGCCCGAGAACC	AAAT (8)	216-235	34	9	0.441
		R-GTTTCCTGTGCGCTTACAAATACG					
	AmLat26	F-ACCAGTGAAAGTGCAACAAG	AGAT (15), AGAT	164	18	1	0.000
		R-GTTTAACCTGTAATCTGCAACCTG	(18)				
	AmLat37	F-TCTTGCAACACTGGGCAC	AATG (12)	303-327	15	6	0.267
		R-GTTTGCGGAACTACTGTGCTGAAC					
	AmLat38	F-GACCCTACCCTATAAC	AAAC (6)	245-258	34	4	0.971
		R-GTTTGTACAAGCCCGTCTATCTC					
	AmLat44	F-GCTACTTACGGGTCTGGTG	AAAC (7)	199–203	19	2	0.053
		R-GTTTGTCAACACCAAATTGCTGCG					
	AmJef21 ^a	F-GGTGATATGTTCGTTTGTTG	AAAC (7)	98–114	35	3	0.743
		R-GTTTGTCTGTTGTCTCCACGCTAC					
	AmLat16 ^a	F-CGGAACTACAATTCAGGCTCC	ACAT (10)	312-328	20	4	0.950
		R-GTTTGGGAAGCTTGCTTACACAGG					
	AmLat33 ^a	F-TGGACTGTGTAGGAGGCTC	AAAG (6)	440-452	15	2	1.000
		R-GTTTAGACACGGAAATTAGCAGCG					

Table 1 Description of 31 loci that amplify consistently in Ambystoma laterale and A, ieffersonianum

- Ambystoma
- jeffersonianum

AmLat40^a

AmJef01

AmJef09

AmJef20

F-CCTCGCATTAGAACTCAGGC

F-CCTAGGTTTCACTTGCTTTC

F-GCCATAATTAAATGACTGC

F-CTTCCATGCTTGTATCC

R-GTTTGCTGCGGAACTACAAACTG

 $R\text{-}GTTTCGAACTGGACAATAGCTATG^{b}$

R-GTTTAGTTGTGATTGGATGCATTC^b

R-GTTTGTTATTTCTGTACCGAGTC

ACAT (7), AAAT

(7)

AAG (9)

AAAC (6)

AC (9)

359

396-408

307-327

376-426 18

19 1

16 4

19 5

6

Table 1 continued

Species	Locus	Primer sequence $(5'-3')$	Repeat motif	Size (bp)	N	Na	Ho	He	
	AmJef22	F-CCCTATTAGCACCTTACCAG	AAAC (7)	356-372	52	5	0.500	0.583	
		R-GTTTGGCTACTTACCCATTTATGC							
	AmJef23	F-ACCTTTCCTACTGCTCCAC	AAAC (7)	343-388	54	10	0.685	0.704	
		R-GTTTCTGCCTCACGTTAATAGAGG							
Am Am Am	AmJef25	F-CTACCCACAACCTTAAGAGC	AAAC (7)	356-382	18	4	0.278	0.250	
		R- GTTTGGCTTAACATCTTGTCAG							
	AmJef28	F-CCTTTGATCTTATGGACCTC	AAAC (7)	354-366	18	2	0.056	0.054	
		R-GTTTGGGAGCGTTGTTATGTATTC							
	AmJef29	F-TGTGCAAACCATACTACG	AAAC (7)	244-366	52	13	0.660	0.867	
		R-GTTTGTAATCATTCGAGGCATACC							
	AmJef30	F-GGAAATAGGCTTCAGAGTTG	AAAC (6)	356-368	18	3	0.333	0.406	
		R-GTTTGTTACCCTTGGGTATTATGC							
	AmJef32	F-GGGACTATGAGTTCACGTTTC	AAAC (6)	355-363	18	3	0.333	0.593	
		R-GTTTGCGCTTCTACATGGATAATC							
	AmJef42	F-CTTGTTCTCAACCCATTTC	AAAG (16)	298-354	52	15	0.558	0.875	
		R-GTTTAGATAATTGCGCACGTTAC							
	AmJef46	F-ACCTCTGCCCTGTAAGATC	AAAC (6)	302-306	18	2	0.222	0.198	
		R-GTTTGTTAAGGGCATTGGTGTG							
	AmJef21 ^a	F-GGTGATATGTTCGTTTGTTG	AAAC (7)	377–385	53	3	0.415	0.412	
		R-GTTTGTCTGTTGTCTCCACGCTAC							
	AmLat16 ^a	F-CGGAACTACAATTCAGGCTCC	ACAT (10)	307-315	13	3	0.923	0.568	
		R-GTTTGGGAAGCTTGCTTACACAGG							
	AmLat33 ^a	F-TGGACTGTGTAGGAGGCTC	AAAG (6)	441–477	16	7	0.688	0.695	
		R-GTTTAGACACGGAAATTAGCAGCG							
	AmLat40 ^a	F-CCTCGCATTAGAACTCAGGC	ACAT (7), AAAT (7)	284-296	17	4	0.588	0.469	
		R-GTTTGCTGCGGAACTACAAACTG							

All other remaining loci were M13 tagged; type is the tagging protocol used for each locus; range is the range of the observed alleles; N is the total number of individuals in which the primer amplifies, N_a is the total number of alleles across all N; H_e and H_o are expected and observed heterozygosities, respectively

^a Locus that amplifies in both species at different size ranges

^b Primer that was CAG-tagged

 H_e : 0.051–0.875). Because of the lack of sufficient numbers of individuals per population, we report no tests of Hardy–Weinberg Equilibrium. However, we acknowledge the importance of detecting null alleles and encourage investigators to test for null alleles if using the loci described here. While the number of alleles per locus is within the lower range of other microsatellite markers, these new loci provide a valuable addition to other microsatellite markers that have been cross-screened with multiple *Ambystoma* species (Peterman et al. 2012). Specifically, the loci that are fixed within species provide a valuable tool for identifying and assessing the population genetics of salamanders with the unisexual *Ambystoma* complex, which mainly consist of genomes from *A. laterale* and *A. jeffersonianum*. **Acknowledgments** This work was funded by the Ohio Biodiversity Conservation Partnership and Ohio State University. We thank those who aided in specimen collection, Jose Diaz, and Mónica Saccucci.

References

- Blaustein AR, Han BA, Relyea RA et al (2011) The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 1223:108–119. doi:10.1111/j.1749-6632.2010.05909.x
- Bogart JP, Bi K, Fu J et al (2007) Unisexual salamanders (genus *Ambystoma*) present a new reproductive mode for eukaryotes. Genome 50:119–136. doi:10.1139/G06-152
- Kartzinel TR, Trapnell DW, Glenn TC (2012) Microsatellite primers for the neotropical epiphyte Epidendrum firmum (Orchidaceae). Am J Bot 99:E450–E452. doi:10.3732/ajb.1200232

- Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/ bts460
- Peterman WE, Connette GM, Spatola BN et al (2012) Identification of polymorphic loci in *Ambystoma annulatum* and review of cross-species microsatellite use in the genus Ambystoma. Copeia 2012:570–577. doi:10.1643/CH-11-001